2024欧洲杯投注官网_沙巴博彩公司-官网平台

图片
シラバス参照/View Syllabus

授業情報/Class Information

科目一覧へ戻る/Return to the Course List 2021/09/16 現在/As of 2021/09/16

基本情報/Basic Information

開講科目名
/Course
総合科学特殊研究(人工知能入門b)/SPECIAL STUDIES IN INTEGRATED ARTS AND SCIENCES:
開講所属
/Course Offered by
国際教養学部言語文化学科/INTERNATIONAL LIBERAL ARTS INTERDISCIPLINARY STUDIES
ターム?学期
/Term?Semester
2021年度/2021 Academic Year  秋学期/FALL SEMESTER
曜限
/Day, Period
水2/Wed 2
開講区分
/semester offered
秋学期/Fall
単位数
/Credits
2.0
学年
/Year
2,3,4
主担当教員
/Main Instructor
黄 海湘

担当教員情報/Instructor Information

教員名
/Instructor
教員所属名
/Affiliation
黄 海湘 経営学科/MANAGEMENT
授業の目的?内容
/Course Objectives
本講義では、前期の内容に続いて、人間のように言語の理解や推論、問題解決などの知的行動を真似する人工的システムの基本概念と問題解決手法について検討する。
人工知能の目的は、人間の代わりに、機械が自律的に問題を発見し、解決することである。そのために、問題解決、推論、自然言語処理、機械学習など、様々な研究が行われている。
今学期の講義では、人工知能の重要な手法である機械学習の概要を学び、さらに、画像認識における応用について実践する。
授業の形式?方法と履修上の注意
/Teaching method and Attention the course
本講義では、人工知能を理解するための必要最小限の知識を習得し、様々な具体例を通じて理解を深める。特に画像認識への応用について座学と実習を織り交ぜて授業を進めるため、休まず出席することを望ましい。また、プログラミング言語Pythonを利用するので、「人工知能入門a」の授業を履修することを勧める。
【履修上の注意】本講義はで実技やプログラムの体験などを行う予定である。特に遠隔授業の場合では、各自がパソコンを持ち、さらに、関連環境を構築する必要がある。
事前?事後学修の内容
/Before After Study
授業で指示した予習内容を事前に精読する。
また、出される課題やレポートなどを解答して提出する必要がある。
テキスト1
/Textbooks1
書籍名
/Title
著者
/Author name
出版社
/Publisher
ISBN
/ISBN
その他(任意)
/other
テキスト2
/Textbooks2
書籍名
/Title
著者
/Author name
出版社
/Publisher
ISBN
/ISBN
その他(任意)
/other
テキスト3
/Textbooks3
書籍名
/Title
著者
/Author name
出版社
/Publisher
ISBN
/ISBN
その他(任意)
/other
参考文献等1
/References1
書籍名/???名
/Title
著者
/Author name
出版社/URL
/Publisher
ISBN
/ISBN
その他(任意)
/other
参考文献等2
/References2
書籍名/???名
/Title
著者
/Author name
出版社/URL
/Publisher
ISBN
/ISBN
その他(任意)
/other
参考文献等3
/References3
書籍名/???名
/Title
著者
/Author name
出版社/URL
/Publisher
ISBN
/ISBN
その他(任意)
/other
評価方法
/Evaluation
授業の参加態度(40%),レポート(20%)及び演習(40%)により総合的に評価する。
関連科目
/Related Subjects
備考
/Notes
テキスト:授業中に関連資料?テキストを配布する。
参考文献:授業中に随時指定する。
到達目標
/Learning Goal
「総合科学研究科目群」の他科目では触れることが難しい分野や領域にわたって人文?社会?自然科学を総合的に研究分析し、見解を提示できるようにする。

/Time
授業計画(主題の設定)
/Class schedule
授業の内容
/Contents of class
事前?事後学修の内容
/Before After Study
1 講義概要 今学期の授業内容と流れについて説明する。
2 人工知能入門aのまとめ 人工知能の歴史、基本理論について説明する。
3 機械学習の歴史 機械学習の歴史、解決できる問題について学ぶ。
4 ディープラーニング初め ディープラーニング(深層学習)理論について説明する。
5 ニューロンとニューラルネットワーク ニューロンとニューラルネットワークの原理について説明する。
6 機械学習の応用 様々な実例を挙げながら、機械学習の応用場面を紹介する。
7 文字認識の原理 文字認識の原理について説明する。
8 画像認識の原理と手法 画像認識の原理と具体的な手法について説明する。
9 プログラミング言語の利用 Pythonの基本文法とスキルについて確認する。
10 画像認識への挑戦 画像認識するためのツールと開発環境などについて説明する。
11 画像認識体験 用意している画像から画像認識するための特徴量を抽出する。
12 画像分析 画像の特徴量を利用して、新たな画像に対して分析を行う。
13 総合演習 画像認識するためのプログラムを完成する。
14 授業のまとめ 今期の授業内容と各自の成果をまとめる。

科目一覧へ戻る/Return to the Course List